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 Environmental management in Iran's iron and steel industry must 

consider multiple targets. The biggest concerns are the realization of 

environmental goals as well as the smooth development of industry 

from the government's point of view which is almost inadequate 

while companies focus most on economic performance metrics such 

as fixed investment, operating costs, and benefits. Adopting various 

energy-saving measures and reducing emissions is required to 

increase costs and at the same time affect innovative performance to 

varying degrees. Therefore, a multi-objective nonlinear optimization 

model is presented in this research to solve and cover the problems 

mentioned so far and also based on the articles reviewed in previous 

research. As an innovation, this research presents an industrial 

environmental management mechanism in a steel plant with 

integrated targets to improve energy consumption, reduce emissions, 

and reduce costs. The approach of this research is to use the Optimal 

Multi-Objective Genetic Algorithm (O-MOGA). 
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Introduction  

Since the 20th century, ecological and environmental problems have garnered widespread attention 
from governments and scholars all over the world. These issues not only affect the quality of people's 
lives but also have implications for the sustainable development of the global economy and human 
society (Xian et al., 2024). Today, high pressure is placed on the environment due to the high emission of 

pollutants and rising costs in industrial workshops which is due to the wrong policies and plans of officials in 

different countries (Abdelaziz et al., 2011; Cole et al., 2005; Fujii et al., 2013). The growth of pollutants has a 

negative impact on the environment, so providing management systems to address the problems and challenges 

of the environment is an important issue. Due to the uncontrolled growth of pollutants and the resulting 

concerns, different environmental goals are seen in the policies of different countries. For example, reducing 

sulfur dioxide (SO2), nitrogen oxides (NOx) and particulate emissions (PM) are the most important goals of 

controlling air pollution while reducing the demand for chemical oxygen (COD) and ammonia nitrogen (NH3-

N) are the goals. The main control of water pollution in different regions such as China, the United States, and 

the European Union(Andersen, 1999; Portney, 1990). 

The existence of different goals in the preservation of the environment in the absence of integration, adds more 

difficulty to the issue of industrial environment management. This is because decision-makers under the 

constraint of these goals which have a variety of goals, such as saving energy and reducing emissions as much 

as possible. Integration of goals means that different goals have aggregation and integration with each other and 

interact with each other in a way that can be considered two important issues of energy saving and reducing 

emissions. One of the issues that can be referred to as non-integration of goals is the study of energy saving 

versus the issue of reducing fuel consumption failure to examine these two issues from different perspectives 

has led to a kind of managerial dispersion and issues such as the use pollutants that require energy consumption 

which are ignored. In this situation, decision-makers must not only take the necessary steps to achieve each 

goal but also the complex relationships of cooperation and trade between different goals. Therefore, several 

energy-saving and emission-reduction goals must be systematically considered to achieve improvements in the 

overall performance of the environment in the industrial sector. Hence, the decision to save energy and reduce 

industrial emissions is a multi-objective optimization problem (more than three goals).  

The use of private sector models for public sector tasks is limited. For example, if privatization is approved for 

parts of remedial projects in industrial workshops as considered by environmental management, financial 

markets may be reluctant to change private sector risk. This could mean that there would be no private-sector 

volunteers for environmental management to accept the private program, so there would be no cost reduction 

and no cost increase. In the absence of bidders, smaller tasks - such as design, construction, or operations - 

should be considered for bids. Some privatization tasks may be fully performed by the government or the 

guarantor of the loan. In addition, even if the financial markets are willing to fund these commitments, the 

general public may challenge the solutions of privatized institutions to solve problems and suspend or suspend 

their implementation.  

In total, there are three important areas in optimizing environmental management which can be energy 

management, reducing emissions, and reducing costs. To overcome the limitations mentioned in the articles 

reviewed in the previous research section, including references (An et al., 2018; Bischi et al., 2014; Chen et al., 

2018; Chen et al., 2014; Li et al., 2015; Nguyen et al., 2016; Oda et al., 2009; Park et al., 2017; Park et al., 

2016; Sano et al., 2013; L. Wang et al., 2015; X. Wang et al., 2015; Wen et al., 2015; Wen et al., 2014; Winden 

et al., 2015) in single-objective models, further research has adopted intelligent algorithms. One of the main 

advantages of these algorithms is that all the goals are considered simultaneously in the optimization process, 

so the relationships between the goals are present and known. Therefore, references (Eberhart & Kennedy, 

1995; Gong et al., 2017; Holland, 1974; Kadambala et al., 2017; Karaboga & Basturk, 2007; Lin et al., 2015; 

Liu & Li, 2015; Lu et al., 2017; Sweetapple et al., 2014; Tao et al., 2016; Wang et al., 2018; C. Wang et al., 

2017; Yu et al., 2016; Yu et al., 2017; Yu et al., 2018) are presented. However, a serious drawback to this 

research is that the number of targets is less than 4. This is because most of the common algorithms used in 

previous research are not capable of solving multi-objective optimization problems because achieving the 

dominant relationship to solve multi-objective problems is difficult which is considered NP-Hard problems. 

Algorithms usually take the dominant relationship to judge the performance of solutions as well as to motivate 

the optimization process. However, these methods, make it much easier to consider non-dominant solutions 

while solving many goal optimization problems. Under these conditions, all solutions, regardless of their 

distance from the ideal solutions are radically optimal and the motivation for optimization is insufficient. 
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Therefore, algorithms that can solve many goal optimization problems should be used in the field of industrial 

environment management.  

In this case, the Non-dominated Sorting Genetic Algorithm or NSGA-III proposed by (Wang et al., 2019) is an 

objective optimization solution method. The NSGA-III innovation is the use of reference point-based selection 

mechanisms that divide target spaces into different parts, link solution points to a specific part, and distribute 

the decentralized solution to the next generation. Through this mechanism, the homogeneity of solutions in the 

solution space increases. So far, through searches, just over 150 articles have covered NSGA-III methods in 

various fields, including control chart design (Tavana et al., 2016), software improvement (Mkaouer et al., 

2015), system planning(Yuan et al., 2015), and algorithm expansion (Yuan et al., 2014; Zhu et al., 2017), but 

few studies have used this method to manage the industrial environment. In addition, most of these studies 

solve the problems of unlimited optimization, but usually, the problems of industrial environmental 

management have limitations to correspond to reality.  

Another methodological gap is the development of decision-making programs. For a highly objective 

optimization problem, the desired results are set (e.g., the front beam in the optimization) and not an individual 

where there is a large scale of solution points to cover the front beam space. This situation makes it difficult for 

decision-makers to choose a plan from those diverse solutions. Therefore, it is necessary to adopt a clustering 

algorithm to search for agents that reflect the characteristics of the whole solution set. The average C-Means 

fuzzy clustering algorithm (FCM) means a combination of membership and Euclidean distance calculation that 

clusters the beam segments and finds the final decision schemes (Bezdek et al., 1984). So far, many studies 

have used the FCM clustering algorithm in the final decision stage (Liu et al., 2018; Wikaisuksakul, 2014). 

However, in the field of industrial environment management, most research still adopts a simple selection 

method to determine final decision plans.  

The iron and steel industry is the pillar industry in Iran, so this industry has been selected as a case study of this 

research. This research seeks to provide suggestions that can improve the overall performance of the industrial 

system, including energy savings, emission reductions for five pollutants, and total cost control. In addition, 

some decision-making schemes are obtained to support environmental management in the iron and steel 

industry. The main production process in the iron and steel industry can be divided into two parts: a long 

process and a short process. In the long process, raw materials, including iron ore and limestone, are used to 

produce steel by coking, sintering, blast furnaces, base oxygen furnaces, and steel rolling mills, while in the 

short process, scrap steel or iron is converted to crude steel in an electric arc furnace. Among these processes, 

the iron-making process of the steel furnace is the main consumer of energy, because a complex redox reaction 

occurs at high temperatures in the steel furnace. In addition, cooking emits most of the sulfur pollutants, while 

the iron furnace, base oxygen furnace, and electric arc furnace mainly emit particulate matter and water 

pollutants such as COD and NH3-N. Five types of pollutants, SO2, NOx, PM, COD, and NH3-N have been 

considered in this study because they have been addressed in Iran's industrial environmental management 

policies.  

Various types of energy-saving and emission-reduction measures have been applied during the production 

process. Among these measures, increasing the capacity of equipment and releasing advanced technology is 

widely accepted. Larger-scale equipment is considered environmentally friendly due to its energy and emission 

intensity. Since 2005, Iran has pursued a policy of disposing of obsolete equipment and encouraging higher-

capacity replacements, emphasizing the importance of these measures in environmental management in the iron 

and steel industry. Alternatively, the release of advanced technology improves the environmental performance 

of the industrial system by increasing energy efficiency, reducing final emissions, or recycling by-products. 

Along with increasing environmental management goals, the correct use of energy-saving measures and 

emission reductions has become difficult because the goals have complex implications for the environmental 

and economic performance of industrial systems. For example, many clean generation technologies can 

simultaneously reduce emissions and achieve energy savings. There are also business relationships, as most 

end-of-pipe technology systems technologies use energy to reduce pollution. In addition, although it improves 

environmental performance, increasing the capacity of process equipment is quite costly. Therefore, it is very 

important that cooperation and trade relations, energy-saving measures, and emission reductions are very 

important for proper planning of their use in Iran's iron and steel industry. 

1. Literature Review 
2.1Management Vision  
The purpose of resource flow life cycle management is to achieve sustainable resources by using traditional 
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linear flow changes in a circular mode. Considering the UNEP framework of coexistence-based life cycle 

management and resource flow life cycle in the previous section, this study proposes a coexistence-based life 

cycle management framework for industrial resource flow management in terms of the five aspects. The 

framework manages the life cycle system of resource flows which consists of five subsystems, including 

exploration, production, consumption, logistics and delivery and disposal, recycling, and disposal, all of which 

are integrated with a set of management strategies. This can help decision-makers to achieve sustainable 

resources, which are targeted by the flow of circular resources in the life cycle system. The evaluation system is 

used to evaluate resources in the life cycle system in terms of two categories of indicators, namely 

environmental impacts and sustainable use. The evaluation system also has a sub-feedback system that gives 

evaluation results to decision-makers to gradually adjust the relevant strategies to achieve the goal.  

The proposed life cycle management approach of this research presents a systematic management solution 

based on a specific coexistence system and a comprehensive life cycle assessment with the aim of sustainable 

management for the flow of resources in the industrial ecosystem. The coexistence system is designed to solve 

environmental problems and use resources. Comprehensive assessment focuses on the impact of management 

and the identification of problems at each stage of the life cycle. The results show that coexistence-based life 

cycle management can minimize environmental impacts and facilitate sustainable use of resources. Meanwhile, 

the use of mineral resources is known as the main problem of the life cycle during which the stage of 

wastewater disposal is the main source of the effects of the use of mineral resources due to the exploitation of a 

particular production of some chemical reagents is characterized. Based on these observations, decision-makers 

can take action by encouraging companies to use alternative reagents that have minimal impact. Given that the 

results provided in the following work provide information that includes the degree of improvement and the 

main problems of each stage of the life cycle, decision-makers can not only be aware of the impact of 

management but can take targeted actions. To solve the problems of using unsustainable resources. Therefore, 

coexistence-based life cycle management on resource resources is efficient and feasible.  

2.2 Recent Researches  
To date, many studies have examined industrial environmental management through optimization methods, one 

of which is bottom-up models. For example, (Li et al., 2015) used the integrated model of the MARKAL 

EFOM SYSEM system (TIMES) and in  (Wen et al., 2015; Wen et al., 2014) respectively the integrated model 

of the Asian-Pacific Integrated (ACM) to plan energy-saving measures and reduce emissions in China used iron 

and steel and cement industry. Many other studies of various types such as DNE21 in(Oda et al., 2009) (Sano et 

al., 2013), Energy Flow Optimization Model (EFOM) in(X. Wang et al., 2015) (Bischi et al., 2014), TIMES 

model in(Chen et al., 2014; Park et al., 2017; Park et al., 2016)[ and National Energy Technology model in(An 

et al., 2018; Chen et al., 2018; Tang et al., 2018), In these models, industrial systems are optimized based on 

minimizing system costs, including fixed investments in energy-saving measures and reducing emissions and 

economic benefits (for example, avoiding fuel purchases and paying pollution taxes). However, as these models 

are widely used, their drawbacks are also evident. First, energy savings, emission reductions, and cost control 

cannot be fully accounted for by net income generation. Second, it is difficult to make accurate decisions on 

environmental factors due to subjective cognitive biases, because the monetary benefits of energy savings and 

emission reductions vary significantly in different studies (Nguyen et al., 2016; L. Wang et al., 2015; Winden 

et al., 2015). Therefore, these methods are not suitable for the current industrial environment management.  

Many intelligent algorithms such as the Non-dominated Sorting Genetic Algorithm II or NSGA-II (Holland, 

1974), the Particle Swarm Optimization or PSO (Eberhart & Kennedy, 1995), and the Artificial Bee Colony 

algorithm or ABC (Karaboga & Basturk, 2007) have been used in the industrial environment. For example, (Yu 

et al., 2017) combine the two NSGA-II algorithms and the PSO to examine optimal investment plans in the 

coal mining industry with three objectives: minimizing energy consumption, emissions, and total cost. In (Liu 

& Li, 2015) focused on the smart grid and built a two-stage energy-saving model through NSGA-II to 

minimize energy consumption as well as total cost. In (Yu et al., 2016) NSGA-II was used as a multi-objective 

input and output optimization model with three objectives to examine whether countries can achieve their 

energy-saving goals by adjusting the industrial structure. Many other studies have been conducted using similar 

methods in industrial energy and environmental management. NSGA-II has been applied in the planning of 

energy-efficient stores (Lu et al., 2017), reducing emissions in the wastewater treatment industry (Sweetapple 

et al., 2014), and saving energy and reducing emissions in Chinese coal. The electrical industry and steel  (C. 

Wang et al., 2017) have been adopted with the help of the PSO algorithm and in energy planning in 

petrochemical industries (Gong et al., 2017) and closed-loop sustainable supply chain networks (Kadambala et 

al., 2017) [35] and industrial structure planning (Yu et al., 2018). The ABC algorithm has been used in energy 
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management for microgrids (Lin et al., 2015) and green matter selection (Tao et al., 2016). Most research has 

solved two or three objective problems.  

Studies like Li et al. (2020) have combined the NSGA-II algorithm with a Grey Wolf Optimization (GWO) 

algorithm to optimize energy consumption, emissions, and cost in a steel production process. This hybrid 

approach provides a more robust and efficient search for optimal solutions compared to using a single 

algorithm. Similarly, Wang et al. (2023) used a Support Vector Regression (SVR) model to predict energy 

consumption and then integrated it with an NSGA-II algorithm for multi-objective optimization in the textile 

dyeing industry. This data-driven and dynamic optimization approach allows for continuous improvement and 

adaptation to changing conditions. In another study, Zhang et al. (2024) explored the use of a Deep Q-network 

(DQN) to manage energy consumption and emissions in a power plant. Their research achieved significant 

improvements compared to traditional methods, demonstrating the effectiveness of using DQN in optimizing 

energy consumption and emissions. 

Chen et al. (2023) proposed a cloud-based multi-objective optimization framework that utilizes real-time sensor 

data from an industrial facility to optimize energy consumption and emissions. This approach allows for 

continuous improvement and adaptation to changing conditions, making it a valuable tool in industrial 

environmental management. Sun et al. (2024) focused on optimizing water resource management and 

wastewater treatment in the papermaking industry using a multi-objective evolutionary algorithm. Their 

targeted approach provides solutions tailored to the unique challenges of each industry.  

In (Wang et al., 2019), presented the optimization of several industrial environment management objectives 

using the NSGA-III algorithm with a case study of the Chinese iron and steel industry. Under the constraint of 

several industrial environmental goals, the difficulty of managing the industrial environment as a multi-

objective optimization problem has increased significantly. Because traditional optimization methods, such as 

bottom-up models and intelligent algorithms, usually have problems solving multi-objective optimization 

problems, this research is the third version of the NSGA-III which introduces the issue of environmental 

management in China's steel and iron industry. This research creates a multi-objective optimization model for 

application planning of four types of decision variables: process equipment, clean production technologies, pipe 

result improvement technologies, and synergy technologies. In total, 7 goals are included, including minimizing 

energy consumption, 5 types of pollution reduction, and economic costs. In addition, the FCM clustering 

algorithm for clustering optimal beam solutions is adopted to formulate the final decision plans. The results 

show that NSGA-III has good performance at center distance, distance measurement, and computational 

efficiency. Optimal beam solutions indicate that the goal of reducing SO2 is too strict while other factors, such 

as energy savings and reduced PM emissions are too lax. In addition, four final decision schemes have been 

obtained based on different target preferences. Overall, it has been proven that the proposed method can solve 

many optimization problems and help make decisions in industrial environmental management. 

3 Proposed Method and Results  
The subject of this study is a steel plant in Tehran for industrial environmental management based on a multi-

objective genetic algorithm by examining three interrelated goals including improving energy consumption, 

improving pollution emissions, and improving cost reduction. Four different areas for industrial environmental 

management in a steel plant are considered by examining the stated objectives which include "circular 

economy", "MILP model", "factor-based model", and "multi-criteria analysis". There are three managerial 

issues, including "scenario analysis", "sustainable decision making", and "integrated evaluation model" which 

should also be considered analysis of the decision-making management system process is useful, but they do 

not take into account the strategic behavior of the actors involved in the negotiation. In contrast, the MILP 

model provides a valuable perspective on how actors 'preferences and decisions influence their opponents' 

choices which offers its next and final results of strategic interaction. For example, if one of the participants 

dramatically as a way offers something to persuade competitors to submit more bids, the price at which it is 

sold may be different from if two or more bidders gradually volunteer until one reaches the maximum 

perceived value. Another advantage of the MILP model is that it considers the behavior of individuals based on 

their interests in practice and seeks to achieve optimal system outcomes of individual selfish behaviors.  

The reference (Zechman, 2011) has provided detailed studies based on the issue of factor-based modeling in 

environmental management, on which there are weaknesses, including not raising the issue of multi-objective 

at all, and its multi-objective structural model is clear. It has not been done and only the MILP model and the 

circular economy and their factors have been studied. Therefore, considering that this research also works in the 

same field, the reference (Zechman, 2011) has recently done similar work but with many weaknesses, which 
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then, to its weaknesses and covered it with the approach presented in this Research is covered.  

Agent-based modeling simulates the interaction between several independent factors and evaluates the impact 

of their actions on a system (Gatti & Grazzini, 2020). Agent-based modeling is used to observe the effects of 

the system and the interactions between agents and their behaviors. This technique is used to simulate group 

dynamics resulting from the interactions of individual factors in societies. Factor-based modeling is a useful 

technique that deals with a significant number of factors in a system and the interaction between and the 

behavior of factors is complex and can be considered when people are different from each other. The main 

characteristics of a factor in factor-based modeling are 1) trying to achieve a set of goals, 2) interacting with the 

environment and other factors are guided by a specific set of social rules, and 3) they can be through the 

system. Predetermined communications affect the behavior of other factors. Factor-based modeling, rather than 

being defined by a definition, involves the interaction between factors and the interaction between the 

environment and factors that create complex system behavior. Agents can learn from the environment and will 

be able to adapt to different situations and new data.  

When studying an economic system, agent-based modeling can easily model an evolving macro space resulting 

from the interaction between multiple factors that are governed by simple determined actions (D. Wang et al., 

2017). Instead of trying to predict the future, factor-based modeling examines the different futures of 

alternative conditions (Lange et al., 2017). This technique can understand the relationship between publishing 

processes and customer purchasing decisions from their derivatives. Agent-based modeling has also been used 

to study collaboration in industrial areas and in-house supply chains. In factor-based modeling, the definition of 

rules is very important and a simple change in rules can have a fundamental impact on the behavior of factors 

and model results.  

Multi-criteria decision analysis intends to organize alternative options hierarchically, thereby effectively 

prioritizing the criteria. This is an operational assessment that is useful for studying topics with high 

uncertainty, multiple interests, and conflicting goals. Multi-criteria decision analysis can rank policy options 

using stakeholder perspectives and cost/benefit information. Multi-criteria decision analysis may be used to 

solve complex obscure and highly uncertain problems. In multi-criteria decision analysis, the complementary 

weight determination method is used to rank the options. Multi-criteria decision analysis is used when several 

parameters affect the performance of a task. The most well-known application of multi-criteria decision 

analysis is to address decision management problems that are affected by conflicting criteria.  

Study scenario analysis studies how to achieve a set (normative) goal in the future that occurs in an unspecified 

(exploratory) way or how to move from an exploration to a stimulus (normative) scenario as a transition 

scenario (Hunt et al., 2013). This analysis is used to test a range of development strategies and select the best 

application using optimization methods. The analysis was performed with the aim of identifying excellent 

scenarios by considering technical, social, economic, environmental, and political criteria. Uncertainty in 

scenario analysis is interpreted as a set of possible future outcomes, in other words, problem analysis creates 

models in which the uncertain future is the basis for the decision management system (Pallottino et al., 2005). 

Scenario analysis should not be confused with prediction. Instead, scenario analysis is an acceptable way in 

which the future may develop. Valuable insights are provided for policymakers when assessing the future 

implications of current and planned procedures(Islam, 2017), for example for analyzing the implications of 

increasing or decreasing recycling rates. Scenario analysis to reduce the risk of a wrong decision management 

system, consider your internal scenario analysis with factor-based systems to temporarily evolve statistically 

independent scenarios to provide a robust choice. This analysis has created the best options considering the 

short-term and long-term costs and benefits of different expected results (Geng et al., 2010).  

To show the complementary potential of the MILP model to its key points in the decision management system 

in industrial environmental management, an example of how to use the MILP model in advancing the 

principles of circular economics using the programs (Ghafourian et al., 2021) is presented. The program uses 

three decision management methods such as cost-benefit analysis (CBA), life cycle, and multi-criteria decision 

analysis, and combines them with the principles of the MILP model to be the best solution to a bargaining or 

Nash Equilibrium problem. This example assumes that there is a negotiation between a city council member 

representing the citizens and the manager of a steel company to agree on the cost of services. With the cost-

benefit analysis tool, it is calculated that the operating cost of the industrial environmental management plan is 

assumed to be 3 million Tomans per ton and through multi-criteria decision analysis weighting methods, 

citizens are willing to pay 10,000 Tomans per service for this service which tons are estimated. Both 

representatives of the organization know that the cost is less than 10,000 Tomans per ton and the value paid is 

more than 3 million Tomans per ton. There is a cost surplus per ton that must be shared between them, i.e. an 
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agreement on the cost of subsequent services is required. It is assumed that people of both players are rational 

and always try to maximize their desired value. Likewise, they are both supposed to be intelligent - they have 

the same information, they understand the situation, and they can make inferences about it. Table (1) shows the 

repayment of the decisions made by their peers. The value on the left is the refund of the recycling company 

and the value on the right is the refund of the steel company. These surplus values share the tonnage for 

shareholders. If both people agree to divide the surplus, they will each receive a refund of 7,500 Tomans. If one 

agrees and the other disagrees, the player receives 5,000 Tomans of consent, while the other receives no share. 

On the other hand, if both stakeholders disagree, the result will be zero (i.e. (d1, d2) = (0,0)). Stability in this 

area means no change of government due to a lack of incentive to deviate from strategies to receive better 

repayments. If the situation of the game is (d1, d2), the council of the steel company has incentives to deviate 

from the strategy, because it has a preferential surplus (10,000 Tomans per ton), in the same way the recycling 

company motivates users to change their strategy. If both modes (d1, u2) and (d2, u1) are considered unstable 

for the steel company for industrial environmental management, respectively, as if they deviate from their 

strategies, in case of transition to mode (u1 , u2),. Hence, it is observed that the condition (u1, u2) is stable for 

both players because the deviation means getting a less preferential refund for the steel company (u1, d2) = 

(5000, 0) or the waste recycling company (d1, u2) = (0.10000) is known as the Nash equilibrium. This is a 

solution concept in the MILP model that says participants have no incentive to keep working.  

Table (1), Negotiated cost model of industrial environmental management services 

  Company Council 
Oppose d2 agree on   u2 

Tehran Steel Production 

Company 
Oppose d1 

agree on u1 

0 and 0 10000 and  0 
5000 and 5000 0 and 10000 

As shown in Figure (1), both stakeholders have symmetric tool functions, then for negotiation of surplus (u1, 

d2) = (5000, 5000) is Nash bargaining solution, i.e. 7500 Tomans service cost and it should be and it has been 

agreed to be paid. It is clear that the example of the MILP model shows the potential for improving 

partnerships in industrial environmental management and the circular economy, as it helps to distribute benefits 

and costs fairly among stakeholders, and in this case, a steel company council representing Citizens and an 

industrial environmental management company, this model can be implemented and results similar to the 

approach of this research can be obtained.  

 
Figure (1), model solution for negotiating the cost of industrial environmental management services with the MILP 

model 

 
However, there are weaknesses in this proposed MILP solution. First, industrial environmental management, 

based on the studies in the introduction and previous studies, requires an industrial ecosystem and a multi-

objective structure for optimization. Therefore, the use of genetic algorithms in the continuation of this method 
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will be discussed. Here are some key goals that should be optimized with a multi-objective genetic algorithm 

that MILP did not allow. It is necessary to answer the main research questions here, which are the following 

two:  

How can optimal energy saving and emission reduction decisions be achieved under multiple environmental 

and economic goals? 

To what extent can taking these measures improve objective performance (e.g. energy savings and emission 

reductions)?  

It can be seen that it is not possible to answer these two questions with MILP, so modeling of the multi-

objective genetic algorithm should be done to optimize or near-optimal goals such as energy saving, emission 

reduction, objective performance improvement. Consideration of two important criteria, emissions least cost 

(ELC) and ambient least cost (ALC) are considered in this research to provide a structure close to optimal. In 

formulating the lowest emission cost, optimization is used to identify the minimum set of controls needed to 

achieve the emission reduction goal. The transport and chemical contaminants are not explicitly shown in the 

formulation of the lowest emission costs and, as a result, the effects of the control site are not considered. In 

contrast, the lowest-cost models of the environment include a representation of the relationship between source 

emissions and the concentration of the environment at the receiver site. A simple formula is the lowest 

environmental cost in equation (1). 

min ∑ 𝑐(𝑒𝑖, 𝑢𝑖)𝑁
𝑖=1     , Ψ(𝑢, 𝑒, 𝑟) ≤ 𝑇   ,      0 ≤ 𝑒𝑖 ≤ 1∀𝑖    (1) 

In this equation, N is the total number of inventory sources, i is the source, and u is the emission rate from 

source i. Also, e_i is the efficiency of reducing emissions at source i and c is a function that determines the cost 

of control in i as a function of ui and ei, Ψ is the maximum concentration of environmental pollutants at each 

receiver site. T is the maximum allowable concentration of environmental pollutants and u, e and r are vectors 

that determine the amount of emission, emission reduction, and location of each source. In this formulation, an 

air quality management strategy is defined by a set of emission reductions at each source, represented by the 

vector e. Optimization is used to identify the lowest cost of reduction so that the cost is minimized and the 

maximum concentration of environmental pollutants resulting from it does not exceed a specific goal. The 

relationship between diffusion and concentration at the receiver site is the relationship between source and 

receiver [S-R] and the function Ψ shown in Ψ(u,e,r)≤T. The lowest environmental cost formulas can be 

classified with the function form Ψ. For contaminants that are non-reactive or linearly reactive, the S-R 

relationship is linear. As a result, reducing each unit of source emission reduces the concentration of the 

medium at a particular receiver by a constant amount, although it can be associated with the MILP model and 

the circular economy in steel mills, but for multi-objective optimization has a development that will be 

examined later. In addition, the effects of reducing greenhouse gas emissions from different sources are 

independent of each other and therefore additive. The linear relationship S-R can be shown in an air quality 

model as a matrix of fixed and linear transfer coefficients that allow Equation (2) to be as follows:  

∑ 𝑎𝑖𝑗 × (1 − 𝑒𝑖) × 𝑢𝑖 ≤ 𝑇𝑗   ,   ∀𝑗𝑁
𝑖=1                                                                    (2) 

In this regard, j is the receiver index, aij is the transfer coefficient related to the emission in i i with the receiver 

concentration j, and Tj is the maximum pollutant concentration of the permissible medium in the receiver j. The 

lowest-cost environmental problems with transfer coefficients are often easily solved using traditional 

mathematical optimization methods such as linear and correct programming. Previous studies have presented a 

multi-objective structure in which some weaknesses have already been examined. If the nonlinear contaminant 

is reactive, the extent to which the source affects the receiver depends on the extent to which it is emitted from 

other sources. As a result, the S-R equation is nonlinear and may not be sufficiently represented as a matrix of 

transfer coefficients. Demonstrating this nonlinear behavior in the context of mathematical programming may 

be impossible for realistic problems. Therefore, it is considered in this research to cover the lowest emission 

cost and the lowest environmental cost as two internal goals in reducing pollution, along with two other goals 

including cost reduction (based on the structure of the circular economy) and energy consumption, intelligent 

multi-objective genetic algorithm optimized.  

The iron and steel industry as a high-consumption industry needs to take integrated action to achieve the 

energy-saving goal set by the Iranian government. Therefore, reducing energy consumption is a major goal. In 

this model, energy consumption can be affected by two methods. The first is the difference in energy 

consumption due to changes in the scale structure of process equipment and the second is energy saving 

through the spread of technologies. This goal is defined as equation (3).  

𝑚𝑖𝑛𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ [𝑃𝑅𝑝,𝑒𝑞,𝑡+∆𝑡 − 𝑃𝑅𝑝,𝑒𝑞,𝑡) × 𝐸𝑝,𝑒𝑞 + (𝑃𝑅𝑝,𝑒𝑞,𝑡+∆𝑡 − 𝑃𝑅𝑝,𝑒𝑞,𝑡) × 𝐸𝑝,𝑖] × 𝑆𝑅𝑝 +𝑛=𝐼
𝑝𝜖𝑃
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𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 ∑ 𝑀𝑂𝐺𝐴 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑛=1
𝑡=1 (3)  

Another major goal of industrial environment management is to reduce emissions which means reducing 

emissions. Here, according to the introduction part, the policies of different countries, including Iran are 

mentioned and five types of climate pollutants are set as targets: SO2, NOx, PM, COD, and NH3-N. Emissions 

can be reduced in various ways. The expansion of equipment and the release of cleaner production technology 

will reduce greenhouse gas emissions, the release of end-of-pipe treatment technology will reduce pollutants, 

and the release of synergistic technology will reduce Excess emissions that become industrial waste. These 

goals are defined as equation (4).  

𝑚𝑖𝑛𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛 = ∑ [𝑃𝑅𝑝,𝑒𝑞,𝑡+∆𝑡 − 𝑃𝑅𝑝,𝑒𝑞,𝑡) × 𝑆𝑅𝑝] + ∑ 𝑃𝐸 −𝑛=1
𝑡=1

𝑛
𝑝𝜖𝑃

𝑀𝑂𝐺𝐴 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟𝑃𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛=(𝑆𝑂2,𝑁𝑂𝑋 ,𝑃𝑀,𝐶𝑂𝐷,𝑁𝐻3−𝑁) (4) 

In these two relations, P is a set of processes, eq is a set of equipment processes, I is a set of technologies, SR is 

a set of steel ratios, p is a set of processes, i is a technology, t is the year index as the base year, t+∆t is the 

index years as the year of optimization, PR penetration rate, E energy intensity equipment or technology, PE 

pollution emission reduction rate.  

Then, based on the proposed approach, a simulation is performed in MATLAB environment. Initial 

quantification of MOGA factors includes the initial population of chromosomes with 100 chromosomes with 5 

elite genes in 100 iteration cycles with a crossover rate of 0.2 and a mutation rate of 0.02 and a random 

selection method and the  Niching and Pareto approach. The output of the simulation is shown in Figure (2).  

Figure (2), optimized output with O-MOGA 

 
    

It is clear that the reduction of energy and pollution was done in 30 minutes with MOGA, and for each of the 

futures, it is illustrative. The optimized numerical results for Pipe, COD, NH3-N, SO2, NOx, and PM are 

shown in Figure (3). 

Figure (3), numerical results of O-MOGA 

 

4 Conclusion  

Advances in environmental management have been made by steel industrial companies around the world in 

recent years. Some steel industry companies now compare their processes to environmental goals with industry 

goals, for example, using benchmarking. To determine "best practices" and define "business behavior", several 
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industrial models in industrial workshops with integrated models and objectives should be considered. The 

Environmental Management Program identifies areas where the effectiveness of efforts can be enhanced using 

management practices developed and used in the private sector. The iron and steel industry has long been a 

global pillar industry supplying raw materials for infrastructure construction. However, behind this huge 

capacity is a lot of energy consumption and emissions, because the iron and steel industry is a high-energy, 

high-emission industry. This problem is extremely severe in Iran. In 1397, Iran's crude steel production was 

more than 27 million tons, which accounted for 6% of world production. According to the statistical yearbook, 

the iron and steel industry accounted for 15.4% of China's industrial energy consumption, SO2 for 14%, NoX 

for 24%, PM for 29%, COD for 3.8%, and 13.8% of NH3-N emissions in 2016. Is. Therefore, providing 

energy-saving methods and reducing emissions in the iron and steel industry in Tehran Steel Plant is essential 

and can be an example of a complete model of environmental management of the entire industrial sector. 
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