The Ethical Challenges of Artificial Intelligence in Marketing

Authors

  • Ahmadreza Samimi Master's Degree, Islamic Azad University, Public Administration, Human Resources Concentration

DOI:

https://doi.org/10.63053/ijmea.46

Keywords:

Artificial Intelligence, Digital Marketing, AI Ethics, Personalization, Machine Learning, Metaverse, Data Privacy

Abstract

Artificial intelligence, as one of the most important transformative technologies of the present era, has had a profound impact on various business sectors, especially marketing. This research aims to provide a comprehensive analysis of the role of artificial intelligence in marketing by examining the challenges, opportunities, and ethical considerations associated with this technology. Using a systematic literature review method and qualitative content analysis, a collection of reputable articles published between 2019 and 2024 has been analyzed. The findings of the research indicate that artificial intelligence has significant potential to enhance the effectiveness of marketing activities through personalizing customer experiences, automating processes, and providing data-driven insights. However, there are also significant challenges such as data privacy, algorithmic bias, and issues related to transparency. This research presents a comprehensive framework for the ethical integration of artificial intelligence in marketing, emphasizing the principles of transparency, fairness, and data privacy. Additionally, the importance of intelligent collaboration between humans and artificial intelligence as an approach to optimally leverage the capabilities of this technology is discussed. The research concludes by offering practical recommendations for the responsible implementation of artificial intelligence in marketing and identifying areas that require further research

References

• Ameen, N., Tarhini, A., Reppel, A., & Anand, A. (2021). Customer experiences in the age of artificial intelligence. Computers in Human Behavior, 114, 106548. https://doi.org/10.1016/j.chb.2020.106548

• Anayat, S., & Rasool, G. (2024). Artificial intelligence marketing (AIM): Connecting-the-dots using bibliometrics. Journal of Marketing Theory and Practice, 32(1), 114–135. https://doi.org/10.1080/10696679.2022.2103435

• Anwar, H., Al Mubarak, M., & Bakir, A. (2023). Artificial Intelligence in Marketing and Organizational Decision-Making: Some Challenges and Concerns. In M. Al Mubarak & A. Hamdan (Eds.), Technological Sustainability and Business Competitive Advantage (pp. 9–23). Springer International Publishing. https://doi.org/10.1007/978-3-031-35525-7_2

• Bartneck, C., Lütge, C., Wagner, A., & Welsh, S. (2021). An Introduction to Ethics in Robotics and AI. Springer International Publishing. https://doi.org/10.1007/978-3-030-51110-4

• Bezuidenhout, C., Heffernan, T., Abbas, R., & Mehmet, M. (2023). The impact of Artificial Intelligence on the marketing practices of Professional Services Firms. Journal of Marketing Theory and Practice, 31(4), 516–537. https://doi.org/10.1080/10696679.2022.2090005

• Bolte, L., & van Wynsberghe, A. (2024). Sustainable AI and the third wave of AI ethics: A structural turn. AI and Ethics. https://doi.org/10.1007/s43681-024-00522-6

• Bourne, C. (2024). Author Correction: AI hype, promotional culture, and affective capitalism. AI and Ethics. https://doi.org/10.1007/s43681-024-00534-2

• Bruni, R., Colamatteo, A., & Mladenović, D. (2024). How the metaverse influences marketing and competitive advantage of retailers: Predictions and key marketing research priorities. Electronic Commerce Research, 24(2), 965–982. https://doi.org/10.1007/s10660-023-09779-1

• Bruni, R., Piccarozzi, M., & Caboni, F. (2023). Defining the Metaverse with challenges and opportunities in the business environment. Journal of Marketing Theory and Practice, 1–18. https://doi.org/10.1080/10696679.2023.2273555

• Bünte, C. (2023). Artificial Intelligence: The Revolution in Marketing. In U. Hannig & U. Seebacher (Eds.), Marketing and Sales Automation: Basics, Implementation, and Applications (pp. 395–408). Springer International Publishing. https://doi.org/10.1007/978-3-031-20040-3_25

• Butlin, P., Long, R., Elmoznino, E., Bengio, Y., Birch, J. C. P., Constant, A., Deane, G., Fleming, S., Frith, C., Ji, X., Kanai, R., Klein, C., Lindsay, G. W., Michel, M., Mudrik, L., Peters, M. A. K., Schwitzgebel, E., Simon, J., & VanRullen, R. (2023). Consciousness in Artificial Intelligence: Insights from the Science of Consciousness (No. 2308.08708). arXiv. https://doi.org/10.48550/ARXIV.2308.08708

• Chintalapati, S., & Pandey, S. K. (2022). Artificial intelligence in marketing: A systematic literature review. International Journal of Market Research, 64(1), 38–68. https://doi.org/10.1177/14707853211018428

• Davenport, T., Guha, A., Grewal, D., & Breßgott, T. (2019). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science. https://doi.org/10.1007/S11747-019-00696-0

• Ding, M., Dong, S., & Grewal, R. (2024). Generative AI and Usage in Marketing Classroom. Customer Needs and Solutions, 11(1), 5. https://doi.org/10.1007/s40547-024-00145-2

• Douglas, D. M., Lacey, J., & Howard, D. (2024). Ethical risk for AI. AI and Ethics. https://doi.org/10.1007/s43681-024-00549-9

• Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C. R., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., Eirug, A., Galanos, V., Ilavarasan, P., Janssen, M., Jones, P., Kar, A., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., … Williams, M. D. (2019). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management. https://doi.org/10.1016/J.IJINFOMGT.2019.08.002

• Dwivedi, Y. K., Hughes, L., Wang, Y., Alalwan, A., Ahn, S., Balakrishnan, J., Barta, S., Belk, R., Buhalis, D., Dutot, V., Felix, R., Filieri, R., Flavián, C., Gustafsson, A., Hinsch, C., Hollensen, S., Jain, V., Kim, J., Krishen, A. S., … Wirtz, J. (2022). Metaverse marketing: How the metaverse will shape the future of consumer research and practice. Psychology & Marketing. https://doi.org/10.1002/MAR.21767

• Eickhoff, C. (2018). Cognitive Biases in Crowdsourcing. Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining, 162–170. https://doi.org/10.1145/3159652.3159654

• El Koufi, N., & Belangour, A. (2024). Artificial Intelligence Techniques in Precision Marketing: A Multi-criteria Analysis and Comparative Study. In F. P. García Márquez, A. Jamil, I. S. Ramirez, S. Eken, & A. A. Hameed (Eds.), Computing, Internet of Things and Data Analytics (pp. 1–7). Springer Nature Switzerland.

• Guan, H., Dong, L., & Zhao, A. (2022). Ethical Risk Factors and Mechanisms in Artificial Intelligence Decision Making. Behavioral Sciences, 12(9), 343. https://doi.org/10.3390/bs12090343

• Haleem, A., Javaid, M., Qadri, M. A., Singh, R. P., Suman, R., Haleem, A., Javaid, M., Qadri, M. A., Singh, R. P., & Suman, R. (2022). Artificial intelligence (AI) applications for marketing: A literature-based study. Int. J. Intell. Networks. https://doi.org/10.1016/J.IJIN.2022.08.005

• Henz, P. (2021). Ethical and legal responsibility for Artificial Intelligence. Discover Artificial Intelligence, 1(1), 2. https://doi.org/10.1007/s44163-021-00002-4

• Hermann, E. (2021). Leveraging Artificial Intelligence in Marketing for Social Good—An Ethical Perspective. Journal of Business Ethics. https://doi.org/10.1007/S10551-021-04843-Y

• Hermann, E., & Puntoni, S. (2024). Artificial intelligence and consumer behavior: From predictive to generative AI. Journal of Business Research. https://doi.org/10.1016/J.JBUSRES.2024.114720

• Huang, M.-H., & Rust, R. T. (2021a). A Framework for Collaborative Artificial Intelligence in Marketing. Journal of Retailing. https://doi.org/10.1016/J.JRETAI.2021.03.001

• Huang, M.-H., & Rust, R. T. (2021b). A strategic framework for artificial intelligence in marketing. Journal of the Academy of Marketing Science, 49(1), 30–50. https://doi.org/10.1007/s11747-020-00749-9

• Jones, G., Hickey, J. M., Stefano, P. G. D., Dhanjal, C., Stoddart, L. C., & Vasileiou, V. (2020). Metrics and methods for a systematic comparison of fairness-aware machine learning algorithms. arXiv: Learning. https://arxiv.org/abs/2010.03986

• Labib, E. (2024). Artificial intelligence in marketing: Exploring current and future trends. Cogent Business & Management, 11(1), 2348728. https://doi.org/10.1080/23311975.2024.2348728

• Laila, N., Sucia Sukmaningrum, P., Saini Wan Ngah, W. A., Nur Rosyidi, L., & Rahmawati, I. (2024). An in-depth analysis of digital marketing trends and prospects in small and medium-sized enterprises: Utilizing bibliometric mapping. Cogent Business & Management, 11(1), 2336565. https://doi.org/10.1080/23311975.2024.2336565

• McAlister, A. R., Alhabash, S., & Yang, J. (2024). Artificial intelligence and ChatGPT: Exploring Current and potential future roles in marketing education. Journal of Marketing Communications, 30(2), 166–187. https://doi.org/10.1080/13527266.2023.2289034

• Peng, C., van Doorn, J., Eggers, F., & Wieringa, J. E. (2022). The effect of required warmth on consumer acceptance of artificial intelligence in service: The moderating role of AI-human collaboration. International Journal of Information Management, 66, 102533. https://doi.org/10.1016/j.ijinfomgt.2022.102533

• Petrescu, M., Krishen, A. S., Kachen, S., & Gironda, J. T. (2022). AI-based innovation in B2B marketing: An interdisciplinary framework incorporating academic and practitioner perspectives. Industrial Marketing Management, 103, 61–72. https://doi.org/10.1016/j.indmarman.2022.03.001

• Puntoni, S., Reczek, R. W., Giesler, M., & Botti, S. (2021). Consumers and Artificial Intelligence: An Experiential Perspective: Journal of Marketing. https://doi.org/10.1177/0022242920953847

• Resnik, D. B., & Hosseini, M. (2024). The ethics of using artificial intelligence in scientific research: New guidance needed for a new tool. AI and Ethics. https://doi.org/10.1007/s43681-024-00493-8

• Román Almánzar, A. D., Grüning, D. J., & Edinger-Schons, L. M. (2024). ‘It wasn’t me’: The impact of social responsibility and social dominance attitudes on AI programmers’ moral imagination (intention to correct bias). AI and Ethics. https://doi.org/10.1007/s43681-024-00516-4

• Rust, R. T. (2020). The future of marketing. International Journal of Research in Marketing, 37(1), 15–26. https://doi.org/10.1016/j.ijresmar.2019.08.002

• Samuel, A., White, G. R. T., Thomas, R., & Jones, P. (2021). Programmatic advertising: An exegesis of consumer concerns. Computers in Human Behavior, 116, 106657. https://doi.org/10.1016/j.chb.2020.106657

• Selbst, A. D., Boyd, D., Friedler, S. A., Venkatasubramanian, S., & Vertesi, J. (2019). Fairness and Abstraction in Sociotechnical Systems. Proceedings of the Conference on Fairness, Accountability, and Transparency, 59–68. https://doi.org/10.1145/3287560.3287598

• Stahl, B. C., & Eke, D. (2024). The ethics of ChatGPT – Exploring the ethical issues of an emerging technology. International Journal of Information Management, 74, 102700. https://doi.org/10.1016/j.ijinfomgt.2023.102700

• Tafesse, W., & Wood, B. (2024). Hey ChatGPT: an examination of ChatGPT prompts in marketing. Journal of Marketing Analytics. https://doi.org/10.1057/s41270-023-00284-w

• Teo, S. A. (2024). Artificial intelligence and its ‘slow violence’ to human rights. AI and Ethics. https://doi.org/10.1007/s43681-024-00547-x

• Verma, S., Sharma, R., Deb, S., & Maitra, D. (2021). Artificial intelligence in marketing: Systematic review and future research direction. International Journal of Information Management Data Insights. https://doi.org/10.1016/J.JJIMEI.2020.100002

• Vijayaraghavan, A., & Badea, C. (2024). Minimum levels of interpretability for artificial moral agents. AI and Ethics. https://doi.org/10.1007/s43681-024-00536-0

• Vlačić, B., Corbo, L., Silva, S. C. e, & Dabić, M. (2021). The evolving role of artificial intelligence in marketing: A review and research agenda. Journal of Business Research. https://doi.org/10.1016/J.JBUSRES.2021.01.055

• Volkmar, G., Fischer, P. M., & Reinecke, S. (2022). Artificial Intelligence and Machine Learning: Exploring drivers, barriers, and future developments in marketing management. Journal of Business Research, 149, 599–614. https://doi.org/10.1016/j.jbusres.2022.04.007

• Zakariah, A., Hosany, S., & Cappellini, B. (2021). Subjectivities in motion: Dichotomies in consumer engagements with self-tracking technologies. Computers in Human Behavior, 118, 106699. https://doi.org/10.1016/j.chb.2021.106699

• Zallio, M., Ohashi, T., & Clarkson, P. J. (2023). Designing the Metaverse: A Scoping Review to Map Current Research Effort on Ethical Implications. arXiv Preprint arXiv:2303.12293.

• Zhuk, A. (2024). Ethical implications of AI in the metaverse. AI and Ethics. https://api.semanticscholar.org/CorpusID:268465013

Published

2025-06-01

How to Cite

Samimi , A. (2025). The Ethical Challenges of Artificial Intelligence in Marketing . International Journal of Applied Research in Management, Economics and Accounting, 2(3), 1–17. https://doi.org/10.63053/ijmea.46

Issue

Section

Articles